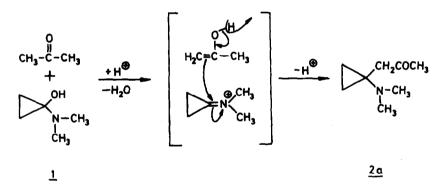

Tetrahedron Letters No. 17, pp 1677 - 1680, 1972. Pergamon Fress. Printed in Great Britain.

THE CHEMISTRY OF SMALL RING COMPOUNDS. PART 17 A MANNICH-TYPE REACTION OF CYCLOPROPANONE*

by


W.J.M. van Tilborg^{**}, G. Dooyewaard, H. Steinberg and Th.J. de Boer^{***} Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands (Received in UK 28 February 1972; accepted for publication 17 March 1972)

We have previously reported¹ on the similarity in chemical behaviour of cyclopropanone and formaldehyde. In order to extend this analogy, we have examined the possibility of using cyclopropanone in Mannich-type reactions. A recent paper of Wasserman et al.² on related "cyclopropanone precursors in the bicyclo[4.1.0] series" prompts us to report our results. The well known Mannich reaction^{3,4,5} between formaldehyde, secondary amines and substrates containing "activated hydrogen" is supposed to proceed <u>via</u> a 1-amino-alcohol. The adduct of dimethylamine to cyclopropanone <u>1</u>, which can be isolated in good yield⁶, is a convenient "starting material".

* Part of the thesis of W.J.M. van Tilborg, University of Amsterdam, 1971.
** Present address: Koninklijke/Shell Laboratorium, Badhuisweg 3, Amsterdam.
*** From whom reprints may be obtained.

Thus, if 1-dimethylaminocyclopropanol <u>1</u>, acetone and acetic acid, in a molar ratio of 2:4:3, are heated for 20 hrs to 65°, the corresponding Mannich base <u>2a</u> is isolated in 33% yield by pouring the reaction mixture into water (pH > 11) and extracting repeatedly with ether. 1-Dimethylaminocyclopropylacetone <u>2a</u>: Analysis calc. for $C_{\rm g}H_{15}$ ON: C 68.04; H 10.71; O 11.33; N 9.92, Found C 67.89; H 10.68; O 11.47; N 9.99 IR (liq. film): 3105, 3020 cm⁻¹, cyclopropyl C-H; 3000, 2960, 2870, 2830, 2780 cm⁻¹, N(CH₃)₂; 1700 cm⁻¹, C=0; 1020 cm⁻¹, cyclopropyl NMR (CDCl₃): $\delta = 0.65$ ppm, AA'BB' pattern (4H); $\delta = 2.20$ ppm, s (3H); $\delta = 2.29$ ppm, s (6H) and $\delta = 2.55$ ppm, s (2H) MS: M[®] at m/e 141, 14.5% of the base peaks at m/e 98 and m/e 44. When the molar ratio between acetic acid and <u>1</u> is increased from 0.8 to 1.4, yields improve from 20 to 33% and remain almost constant at ratios up to 2.

Scheme 1

Similarly, dimethylmalonate (150 mmoles) reacts with <u>1</u> (10 mmoles) at room temperature (3 days) giving the adduct <u>2b</u> in about 20% yield. Compound <u>2b</u> is rapidly hydrolysed during work up. Its isolation can be accomplished by extracting the reaction mixture, dissolved in ether, with 5% aqueous HC1. The aqueous layer is then very rapidly extracted with ether, immediately made alkaline with Na_2CO_3 and extracted five times with ether. Further purification can be achieved by GLC (10% OV-17, silicon oil on chromosorb, temp. 90°).

Compound 2b: Analysis calc. for C10H1704N: C 55.80; H 7.96; N 6.51, Found C 55.91; H 7.84; N 6.46 IR (liq. film): 3205, 3120 cm⁻¹, cyclopropyl C-H; 2960, 2820, 2770 cm⁻¹, C-H; 1735 cm^{-1} , C=0; 1020 cm⁻¹, cyclopropyl NMR (CDCl₃): $\delta = 0.75$ ppm, s (4H); $\delta = 2.28$ ppm, s (6H); $\delta = 3.70$ ppm, s (6H) and $\delta = 3.88$ ppm, s (1H) MS: M^{\oplus} at m/e 215, 24% of the base peak at m/e 156. Furthermore, treatment of <u>1</u> (50 mmoles) with phenol (100 mmoles) in CH_2Cl_2 at room temperature for 48 hrs, leads to the introduction of the 1-dimethylaminocyclopropyl group in the ortho position only, giving the cyclopropylphenol 2c in 54% yield. 1-(o-Hydroxyphenyl)1-dimethylaminocyclopropane 2c: Analysis calc. for C₁₁H₁₅ON: C 74.54; H 8.53; N 7.90, Found C 74.50; H 8.71; N 7.81 IR (KBr): 3400-2400 cm⁻¹, broad band (OH intramolecularly bonded); 3000-2800 cm^{-1} , N(CH₃)₂; 1600, 1520 cm⁻¹, Ar; 1020 cm⁻¹, cyclopropyl; 675 cm⁻¹, Ar (4 adjacent H-atoms) NMR (CDCl₃): δ = 1.0 ppm, AA'BB' pattern (4H); δ = 2.3 ppm, s (6H); δ = 6.9 ppm, m (4H) MS: M^{\oplus} at m/e 177 (base peak). Compound 2c reacts with phenylisocyanate giving the corresponding urethane; m.p. 51-52°. Analysis calc. for C₁₈H₂₀O₂N₂: C 72.95; H 6.80; N 9.45, Found C 72.64; H 6.91; N 9.49 IR (KBr): 3450 cm⁻¹, NH; 3100, 3000 cm⁻¹, cyclopropyl C-H, Ar-H; 1740 cm⁻¹, C=0; 1600, 1500 cm⁻¹, Ar; 1010 cm⁻¹, cyclopropyl NMR $(CD_{3}COCD_{3})$: $\delta = 0.85$ ppm, AA'BB' pattern (4H); $\delta = 2.2$ ppm, s (6H); $\delta =$ 7.3 ppm, m (9H) MS: M^{\oplus} at m/e 296, 6% of the base peak at m/e 100. Remarkably, such well known Mannich reagents^{3,4} as succinimide, dinitroethane. methyl cyanoacetate, methyl acetoacetate and acetylacetone all fail to react in this way. Possibly this is due to amino-elimination⁴ from the products or the reversal of the Mannich reaction⁵. This problem is currently being investigated.

References

- 1. W.J.M. van Tilborg, S.E. Schaafsma, H. Steinberg and Th.J. de Boer, <u>Rec.</u> <u>Trav. Chim. 86</u>, 417, 419 (1967).
- 2. H.H. Wasserman and M.S. Baird, Tetrahedron Letters 1971, 3721.
- 3. B. Reichert, Die Mannich Reaktion, Georg Thieme Verlag, Stuttgart 1959.
- 4. H. Hellmann and G. Opitz, α -Aminoalkylierung, Verlag Chemie, Weinheim 1960.
- 5. B.B. Thompson, J. Am. Pharm. Assoc., Sci. Ed. 57, 715 (1968).
- 6. For synthesis and isolation, see W.J.M. van Tilborg, Thesis, University of Amsterdam, 1971, p. 27, 39.